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EXECUTIVE SUMMARY 

This report presents the findings from an eight-year performance evaluation of eight cells (Cells 16-23) 

built at the Minnesota Road Research Facility (MnROAD) in 2008. The constructed cells were used for 

two performance evaluation studies of: 1) unbound base materials (i.e., recycled asphalt pavement 

(RAP), recycled concrete aggregate, and taconite) and Class 5 aggregate as the road base material and 2) 

surface materials that include warm mix additives (WMAs), RAP, and different binders with different 

performance grades.  

The eight cells were tested via a surface distress survey, rutting tests, falling weight deflectometer tests, 

international roughness index (IRI) tests, and friction tests. Disk-shaped compact tension (DCT) tests also 

were performed using the mixture samples, and the performance of the unbound base materials (Cells 

16-19) was evaluated using light-weight deflectometer (LWD), dynamic cone penetrometer (DCP), and 

gradation tests. During the performance monitoring period from 2008 to 2016, the cells did not 

experience any extreme weather events, and the traffic levels, i.e., the equivalent single-axle loads 

(ESALs) and truck percentages, also were in the normal range. The fatigue life and rutting life of the 

pavements predicted by MnPAVE ranged from 9 to 50 years and 6 to 11 years, respectively. After eight 

years of service (approximately 5.6 million ESALs), the fatigue and rutting exhibited by the cells did not 

exceeded the failure threshold.  

All the data presented in this report, as well as the sampling, testing, and construction information, can 

be found in the MnROAD database and various publications. Additional information about MnROAD can 

be found on the MnROAD website at http://www.dot.state.mn.us/mnroad/index.html. The following 

conclusions and recommendations were reached based on the field and laboratory test results. 

Conclusions: 

 Overall, after eight years of service, the cells were in good condition relative to surface 

distresses, rutting, stiffness, IRI values, and friction. Consequently, it was difficult to compare 

the performance differences among the various unbound materials and mixtures. 

 A correlation between DCT fracture energy and the thermal low-temperature performance of 

the mixtures could not be found due to the limited number of cracks in the cells. 

 The unbound recycled materials and taconite performed as well as the Class 5 aggregate base 

material in terms of the gradation, DCP, and LWD test results.  

 All mixture types, regardless of RAP content, binder grade, or the presence of WMA, exhibited 

similar performance. 

Recommendations: 

 Additional research is required to validate the findings from these studies. Laboratory tests 

using core samples currently are being conducted, and a separate report will be generated to 

expand on this report. 

http://www.dot.state.mn.us/mnroad/index.html


 

 

 MnPAVE updates are required for the unbound base materials. Resilient modulus values and 

seasonal variations of the unbound base materials need to be found. 

 Further research regarding a temperature correction model for TONN 2010 needs to be 

conducted to refine the existing model. Significant seasonal variations with back-calculated 

stiffness values were noted even after being corrected for 72ºF. 
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CHAPTER 1:  INTRODUCTION 

1.1 PROJECT BACKGROUND AND OBJECTIVES 

Low-temperature cracking is the major surface distress type found in asphalt pavements that experience 

cold weather climates, such as the climate of Minnesota. As the temperature drops, the restrained 

pavement tries to shrink. Tensile stress builds up as the restrained pavement attempts to shrink at low 

temperatures, and a crack forms at a critical point. The current low-temperature specifications consider 

only the asphalt binder performance grade (PG), and thus, specifications must be developed for the 

asphalt mixture as well (2). The primary objective of this study is to validate the current laboratory test 

procedures, models, and pavement design procedures. A fracture mechanics approach was used in this 

study to investigate the detrimental effects of aging and moisture on the fracture resistance of asphalt 

materials. 

This report presents the findings from an eight-year performance evaluation of eight cells (Cells 16-23) 

built at the Minnesota Road Research Facility (MnROAD) in 2008. The constructed cells were used for 

two performance evaluation studies of: 1) unbound base materials, i.e., recycled asphalt pavement 

(RAP), recycled concrete aggregate (RCA), and taconite, and Class 5 aggregate as the road base material, 

and 2) surface materials that include warm mix additives (WMAs), RAP, and different binders with 

different PGs. 

Minnesota has a long history of using recycled materials in all of the pavement layers in pavement 

construction. The Minnesota Department of Transportation (MnDOT) specification 3138 (2016) allows 

recycled materials, including, e.g., RAP and recycled Portland concrete cement (PCC), etc. as the base 

material (1). However, the material properties (strength, stiffness, unsaturated properties, etc.) of these 

materials are not well understood. In 2004, MnDOT began a partnership with the Minnesota 

Department of Natural Resources to evaluate Mesabi Select aggregate as a base material. A follow-up 

project in conjunction with the Natural Resources Research Institute at the University of Minnesota at 

Duluth included new construction using taconite aggregate, which is commonly used as railroad ballast 

(2). For the current long-term study, these material properties were monitored during construction and 

throughout the pavement life to determine their effects on pavement performance. Specifically, the 

objective of this study is to monitor the performance of the MnROAD cells that were constructed using 

recycled materials in the granular base layers; these materials include recycled materials blended with 

virgin materials (Cell 17) and 100 percent recycled asphalt (Cell 18), recycled concrete pavement 

materials (Cell 16), and Mesabi Select aggregate (Cell 23).  

MnROAD partnered with the National Center for Asphalt Technologies (NCAT) in the fall of 2015. This 

partnership initiated one of the first pavement research efforts to develop and implement asphalt 

performance tests to predict cracking for common distresses found in pavements in North America. As a 

result, both MnROAD and NCAT started to develop test sections for their research partnership. MnROAD 

Cells 16 through 23 are the only existing cells that meet the requirement (i.e., eight consecutive cells on 
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the MnROAD mainline test road) for these test sections. As of November 2016, Cells 16 through 23 

(Phase II, constructed in 2008) were removed for new construction. 

1.2 PREVIOUS STUDIES OF MNROAD PAVEMENTS 

Several research studies of the asphalt pavements at MnROAD have been conducted in the past to 

investigate low-temperature cracking, the performance of RAP and recycled unbound materials, surface 

characteristics, the benefits of the Phase II research, and construction. The titles, report numbers, and 

brief summaries of the studies performed using Cells 16 through 23 are presented in the following 

subsections. 

1.2.1 Investigation of Low-Temperature Cracking in Asphalt Pavements  (Report No. 

2007-43) 

Marasteanu et al. conducted research into the development of experimental and analytical methods to 

investigate the fracture resistance of asphalt materials and the fracture performance of asphalt 

pavements at MnROAD. Marasteanu et al. reached the following conclusions based on their research 

(3):  

 Asphalt binder properties are among the major factors used to design asphalt mixtures that are 

resistant to low-temperature cracking. However, low-temperature cracking cannot be predicted 

with sufficient reliability using the current asphalt binder test methods. 

 The effects of temperature and loading rate are significant for low-temperature tests on asphalt 

mixtures. Furthermore, the mixture coefficient of thermal contraction is a critical parameter 

that is needed to estimate low-temperature cracking in the field. 

1.2.2 2008 MnROAD Phase II Construction Report  (Report No. 2009-22) 

Johnson et al. documented the MnROAD Phase II construction, which was begun in 2007 and continued 

through 2008. The construction involved the reconstruction of Cells 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 

19, 20, 21, 22, and 23 on MnROAD’s ‘mainline’ test section and Cells 24, 39, 53, 85, 86, 87, 88, and 89 on 

MnROAD’s low-volume test road. Funding for the construction and research came from many partners, 

both locally and nationally, and the total budget was $10.9 million. The core research areas were 

mechanistic design, innovative construction, preventive maintenance, recycled materials, pavement 

rehabilitation, surface characteristics, and other non-pavement research (2). Table 1-1 through Table 1-5 

provide summaries of the material properties for Cells 16 through 23 obtained at the time of 

construction. 
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Table 1-1 Proctor test data for Class 5 material 

Cell Opt. Moisture (%) Max Density (pcf) 

19 9.1 128.3 

20 9.3 129.2 

21 8.9 129.3 

22 10.3 128.1 

 

Table 1-2 Proctor test data for unbound recycled material 

Cell Material Opt. Moisture (%) Max Density (pcf) 

16 100% recycled PCC 11.7 118.0 

17 
50% recycled PCC 

50% virgin Class 5 
10.4 123.2 

18 100% RAP 6.7 124.4 

 

Table 1-3 Proctor test data for Select Granular material 

Cell Material Opt. Moisture (%) Max Density (pcf) 

16 Select Granular 8.1 131.5 

17 Select Granular 8.1 130.6 

18 Select Granular 7.9 130.1 

19 Select Granular 7.7 131.4 

20 Select Granular 8.5 129.6 

21 Select Granular 8.3 129.2 

22 Select Granular 8.4 128.6 

23 Select Granular 7.6 131.4 
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Table 1-4 Material properties for subgrade (clay loam) 

Cell 
Optimum 

Moisture 

Max 

Density 

Liquid 

Limit 

Plastic 

Limit 

Plasticity 

Index 
R-Value 

16 13.6 117.1 30.5 19.3 11.2 25.8 

17 14.9 113.5 33.8 20.8 13.0 18.9 

18 13.9 114.2 33.8 20.5 13.3 20.9 

19 15.6 112.1 29.8 21.9 8.0 28.2 

20 15.2 113.2 30.3 15.5 14.8 22.9 

21 16.4 108.9 32.6 18.1 14.5 25.4 

22 15.7 112.6 30.9 18.5 12.4 23.0 

23 16.5 109.7 34.1 20.5 13.7 18.5 

 

Table 1-5 Average density and air void results for hot mix asphalt core samples 

Cell Description % Density Air Voids 

15-19, 23 WMA non wear 93.4 6.6 

15-19, 23 WMA wear 92.0 8.0 

20 RAP non wear 95.6 4.4 

20 RAP wear 92.5 7.5 

21 FRAP non wear 95.0 5.0 

21 FRAP wear 92.3 7.7 

22 FRAP non wear 95.4 4.6 

22 FRAP wear 93.6 6.4 
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1.2.3 Use of Taconite Aggregates in Pavement  (Report No. 2010-24) 

Clyne et al. investigated the use of taconite aggregate for pavement applications. Clyne et al. reported 

the following major findings (4): 

 Taconite aggregate can be used as a quality aggregate base for asphalt and concrete pavement 

base layers. The test sections composed of taconite aggregate at MnROAD showed good 

performance. 

 The laboratory test results also indicated good performance of the asphalt mixture that 

contained taconite aggregate compared to the asphalt mixtures composed of conventional 

aggregate. 

1.2.4 Investigation of Low-Temperature Cracking in Asphalt Pavements National Pooled 

Fund Study - Phase II  (Report No. 2012-23) 

Marasteanu et al. conducted research that was a continuation of their 2007 work to investigate low-

temperature cracking. Based on their research, Marasteanu et al. reached the following conclusions (5): 

 Disk-shaped compact tension (DCT) tests and semi-circular bending laboratory tests of asphalt 

mixtures showed that fracture tests could distinguish between different mixtures. 

 A 15 percent increase in fracture energy to account for mixture aging and a higher fracture 

energy threshold are suggested. The DCT test validation showed that the test could reasonably 

predict the initial field performance data.  

 The new ILLI-TC thermal cracking model is a significant improvement over current models in 

handling fracture simulations. The researchers also developed a thermal stress model that 

accounts for the glass transition and physical hardening of asphalt mixtures, thereby providing a 

foundation for developing mixtures that resist cracking through multiple temperature cycles. 

1.2.5 Recycled Unbound Materials  (Report No. 2012-35) 

Edil et al. characterized the properties of RCA and RAP as unbound base materials without stabilization 

(6). This project included laboratory specimens, large-scale model tests, and the evaluation of field data 

from MnROAD test sections constructed using recycled materials. In addition, the study employed 

recycled unbound materials from other states, i.e., California, Colorado, Michigan, Minnesota, New 

Jersey, Ohio, Texas, and Wisconsin. A conventional base course was used as the control material. 

Overall, RCA and RAP were determined to be suitable materials for unbound base layer applications and 

could provide equal or superior performance compared to natural aggregates in terms of stiffness, 

freeze-thaw and wet-dry durability, and toughness. Additional major findings from the Edil et al. report 

are as follows: 
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 The mechanical properties of RAP and RCA that were determined under different climatic 

conditions indicate that both RAP and RCA have higher stiffness values than Class 5 aggregate 

base material regardless of the number of freeze-thaw cycles. 

 Effects of temperature on the resilient modulus of RCA and natural aggregate at 7°C, 23°C, 35°C, 

and 50°C were not evident; however, a decrease of approximately 30 percent of the resilient 

modulus was observed in two of the three RAP specimens tested between 23°C and 35°C. This 

finding suggests that the service life of a pavement constructed with RAP/RPM may be shorter 

than the service life of a pavement that has a natural crushed aggregate base in terms of rutting 

due to the combined effects of decreasing stiffness and increasing plastic deformation that 

result from the temperature increase. 

 Based on their measured unsaturated hydraulic conductivity values, the RAP and RCA showed 

greater drainage capacity than the Class 5 material. 

 Falling weight deflectometer (FWD) tests have been conducted at MnROAD cells since 

construction (2009-2012). All of the pavement layers below the surface layer (i.e., the base, sub-

base, and subgrade) have retained a relatively constant level of stiffness regardless of the 

temperature. Moreover, no deterioration of the modulus was evident over the subsequent four 

years (to 2016). 

1.2.6 MnROAD Study of RAP and Fractionated RAP  (Report No. 2012-39) 

Johnson et al. evaluated and compared the laboratory and field performance of RAP and fractionated 

RAP (FRAP) by monitoring test cells at MnROAD between 2008 and 2012. Based on their research, 

Johnson et al. reached the following conclusions (6): 

 Overall, only limited amounts of distress were observed in Cells 16, 20, 21, and 23. With regard 

to experimental variables, Cell 21 (PG 58-28 FRAP) developed 13 feet of longitudinal cracking. 

 The IRI results were similar within study groups, i.e., WMA, FRAP, and recycled base material. 

The rutting test results revealed that rutting was not an issue for any of the cells, as measured 

by an Automated Laser Profile System (ALPS) laser. 

1.2.7 Hot Mix Asphalt Surface Characteristics Related to Ride, Texture, Friction, Noise 

and Durability  (Report No. 2014-07) 

McDaniel et al. investigated 25 asphalt-surfaced roadway test sections at MnROAD to develop a model 

to predict on-board sound intensity (OBSI) on hot mix asphalt (HMA) pavements. The model indicated 

that, in order to achieve a low-noise pavement, a smooth surface with a low stiffness value is preferable. 

Pavements with chip or surface seals have greater texture and result in higher noise levels than warm 

mix asphalt and low-volume traffic mixtures that generally have lower stiffness values and produce less 

noise (7). 
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1.2.8 Benefits of MnROAD Phase II Research  (Report No. 2015-19) 

Worel and Van Deusen reported the benefits of the MnROAD Phase II research (2007 -2016). They 

reported that the estimated annual savings and benefits were over $10 million. The major benefits 

reported in the study that relate to Cells 16 through 23 are as follows (8): 

 Findings from the study, Investigation of Low Temperature Cracking in Asphalt Pavements, led to 

enhanced pavement life due to the reduced rate of low-temperature cracking occurrences and 

the reduction in damage and resultant efficiency of maintenance and construction costs. 

 Three cells built in 2008 incorporated higher than standard recycled asphalt content, and these 

cells performed well. The findings were able to lead to improvements in the pavement life cycle 

and cost-effectiveness due to the more sustainable use of existing resources. 

 In 2008, six test cells on the I-94 mainline roadway were constructed using warm mix 

technology. These sections were the first MnROAD sections to demonstrate WMA usage on a 

high-volume roadway. This work helped foster a sense of confidence in using WMA on a wider 

scale across Minnesota. 

 The study, HMA Surface Characteristics Related to Ride, Texture, Friction, Noise, Durability, 

evaluated several asphalt surface types, including porous, dense-graded, ultra-thin bonded, and 

taconite. The key findings led to the determination of the characteristics of each these surfaces 

with respect to level of sound absorption, friction, ride, and longevity when subjected to 

Minnesota’s climate extremes. 

1.2.9 DCT Low Temperature Testing Pilot Project  (Report No. 2015-20) 

Johanneck et al. reported the use of the DCT test to measure the thermal fracture properties of asphalt 

mixtures in five asphalt paving projects in Minnesota during the 2013 construction season. The five 

construction projects represented different climatic conditions, construction practices, and asphalt 

binder PGs. DCT tests were conducted using both adjusted and unadjusted production mixes to verify 

the mixes’ fracture energy requirement of 400 J/m2. Preliminary distress survey results indicated that 

the samples with mill and overlay experienced more cracking compared to samples that contained 

reclaimed or virgin binder. Additional key findings from the study are as follows (9): 

 Differences in materials can greatly affect fracture energy; thus, specimens prepared for DCT 

testing must match the material to be used during production. 

 The presence of polymer-modified binder did affect the fracture energy. 

 The test temperature for DCT test specimens is recommended to be 10°C warmer than the 

asphalt binder PG low temperature required for 98 percent reliability as determined by 

LTPPBind 3.1 software. 
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1.3 REPORT ORGANIZATION 

This report is organized into four chapters. Chapter 1 provides the research background, objectives, and 

a summary of previous research conducted using MnROAD Cells 16 through 23. Chapter 2 describes the 

experimental study conducted to evaluate unbound recycled base materials and mixture low-

temperature cracking performance. Chapter 3 discusses the findings from the eight-year performance 

evaluation of the eight test cells. The conclusions from this research and future research 

recommendations are given in Chapter 4. 

All the data presented herein, as well as the sampling, testing, and construction information, can be 

found in the MnROAD database and various publications. Additional information about MnROAD also 

can be found on the MnROAD website at http://www.dot.state.mn.us/mnroad/index.html. 

 

  

http://www.dot.state.mn.us/mnroad/index.html
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CHAPTER 2:  EXPERIMENTAL EVALUATION 

2.1 CONSTRUCTION 

2.1.1 Site information 

The MnDOT’s pavement test track (MnROAD) is located 40 miles northwest of Minneapolis/St. Paul and 

contains over 50 individual test sections. All of the test sections, each approximately 500 feet long, are 

owned and operated by MnDOT and its partners. Two separate roadway segments that also are 

included are the 3.5-mile Interstate-94 mainline roadway and bypass and a 2.5-mile low-volume 

roadway. This report focuses on eight test sections (Cells 16-23) that were constructed in 2008 on the 

east end of the 3.5-mile Interstate-94 mainline test section. 

2.1.2 Recycled unbound pavement materials (Cells 16-19, 23) 

The construction of the cells began in May 2008. First, the existing pavement was milled, followed by 

the placement of Select Granular and Class 3 materials. In late August and early September 2008, the 

aggregate base layers were constructed, and the cells were paved on September 17 and 18. The 

construction of Cell 23 required the placement of fabric on top of the Class 3 aggregate base. Mesabi 

Select aggregate was then placed by having a dozer push it into place and then rolled vigorously to 

compact the aggregate. This compaction effort was found to cause the aggregate particles in the bottom 

layer to fracture. It should be noted also that the HMA overran by approximately 30 percent on the 

bottom lift due to loss into the Mesabi Select aggregate voids. Table 2-2 provides a summary of the 

major construction activities and dates performed. 

Cells 16 to 18 all had a 5-inch asphalt wearing course with PG 58-34 binder. These cells were built as 12 

inches of recycled base course material over 12 inches of Class 3 material that was over 7 inches of 

select granular material. Cell 19 was similarly constructed overall, but used virgin Class 5 aggregate base 

material as the control. The recycled base materials were 100% recycled PCC for Cell 16, 50% recycled 

PCC and 50% virgin Class 5 material for Cell 17, and 100% RAP for Cell 18.         

Figure 2-1 presents cross-sections of Cells 16 to 19 and 23. The subgrade material for all the cells was 

determined to be predominantly clay loam (AASHTO A-6) according to soil tests of 240 specimens 

collected from the entire MnROAD site, as shown in Table 2-1. The material properties for the subgrade 

materials obtained from the 2008 construction report are provided in Chapter 1.2.2 . 

Materials for MnDOT laboratory testing were obtained during the construction of the roadway cells at 

the MnROAD test facility in Monticello, Minnesota to investigate the field behavior. RAP was milled from 

the roadway surface of previously constructed cells at MnROAD. The RCA was obtained from a stockpile 

maintained by the Knife River Corporation at their pit located at 7979 State Highway 25 NE in 

Monticello, Minnesota. 
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Figure 2-1 Typical cross-sections for Cells 16 to 19 and 23. 

 

  

 

Table 2-1 MnROAD soils test results  

OCCURRENCES 

Classification (No. of Occurrences) 

Grand Total 

A-1-B A-4 A-6 A-7-6 CL L SA 

AASHTO GROUP 5 9 97 9    120 

TEXTURAL CLASS     70 45 5 120 

Grand Total 5 9 97 9 70 45 5 240 
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Table 2-2 Major construction activities and dates for Cells 16 to 19 and 23 in 2008 

Cell Milling 

Select 

Granular 

Placement 

Class 3 

Placement 

Recycled 

Base 

Course 

Placement 

Paving 

16 May 7 – 8 Jun 26 Jun 27 Aug 28 Sep 17 - 18 

17 May 7 – 8 Aug 20 Aug 20 – 21 
Aug 28 – Sep 

3 
Sep 17 - 18 

18 May 7 – 9 Aug 25 – 26 Aug 26 – 27 Sep 9 Sep 17 - 18 

19 May 7 – 9 Jun 25 Jun 26 – 27 Sep 3 Sep 17 - 18 

23 
May 7 – Jun 

2 
Jun 25 Jun 26 Sep 8 – 9 Sep 17 - 18 

 

2.1.3 Low-temperature cracking performance (Cells 20-22) 

Milling was completed in early June 2008. Select granular material was placed starting June 17 and 18. In 

late June, Class 3 and Class 5 aggregate base materials were placed. The first lift and second lift of the 

HMA were constructed on September 5 and 10, respectively. Error! Reference source not found. p

rovides a summary of the major construction activities and dates performed. 
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Table 2-3 Major construction activities and dates for Cells 20 to 22 in 2008 

Cell Milling 

Select 

Granular 

Placement 

Class 3 

Placement 

Class 5 

Placement 
Paving 

20 
May 7 – Jun 

2 
Jun 17 Jun 19 Jun 23 Sep 5 & 10 

21 
May 7 – Jun 

2 
Jun 18 Jun 20 Jun 23 Sep 5 & 10 

22 
May 7 – Jun 

2 
Jun 18 Jun 20 Jun 23 Sep 5 & 10 

Figure 2-2 presents cross-sections of Cells 16 through 19 and 23. Cells 20 to 22 all had the same 5-inch 

asphalt wearing course but Cell 22 had a different PG; the PG for Cells 20 and 21 was 58-28, whereas the 

PG for Cell 22 was 58-34. These cells were built on 12 inches of virgin Class 5 material over 12 inches of 

Class 3 material, which were over 7 inches of select granular material. Cell 20 included 30 percent non-

fractional RAP material in the mixture whereas Cells 21 and 22 had a 30 percent fractionated RAP split 

on the quarter-inch screen in the mixture. All cells had clay loam (AASHTO A-6) as the subgrade material.  

 

Figure 2-2 Typical cross-sections for Cells 20 to 22. 

2.2 WEATHER AND TRAFFIC DATA 

MnROAD is located in Wright County, Minnesota. Like most locations in Minnesota, the Wright County 

area experiences temperature extremes. Weather information for Wright County was obtained from the 
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National Oceanic and Atmospheric Administration (NOAA), as shown in Figure 2-3 and Figure 2-4 that 

present the high/low monthly temperatures and the monthly accumulated precipitation, respectively. 

Figure 2-4 presents the high and low temperatures for each day in a month that were averaged from 

January 2009 to August 2016. This figure shows the average temperature (47.05 ºF) from 1981 to 2010. 

Figure 2-3 also shows that July and January are the hottest and coldest months of each year, 

respectively. Figure 2-4 shows that the rainiest months are in the spring (May) and summer (July). The 

average annual precipitation from 1981 to 2010 was 32 inches, and the only year from 2008 to 2016 

that experienced above average annual precipitation (36 in.) was 2015. Overall, the MnROAD cells did 

not experience any extreme weather events during the performance evaluation period (2008 – 2016).  

Figure 2-3 Average high and low temperatures by month in Wright County, Minnesota 
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Figure 2-4 Accumulated monthly precipitation by month in Wright County, Minnesota 
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The MnROAD mainline ESALs were determined from two weigh-in-motion devices located at 
MnROAD. Table 2-4 provides a summary of the average annual daily traffic (AADT), ESALs, and the 

percentage of trucks (‘% Truck’) in both the driving and passing lanes. Approximately 75 percent of all 

monitored traffic was on the cells. MnROAD cells experienced approximately 5.6 million ESALs during 

the monitoring period (2008 – 2016).  

Additional information about MnROAD can also be found on the MnROAD website at 

http://www.dot.state.mn.us/mnroad/index.html. 

Table 2-4 Traffic data for driving and passing lanes in MnROAD mainline westbound (WB) lanes 

Interstate-94 Mainline 

WB Lanes 

Driving Passing 

AADT ESALs % Truck AADT ESALs % Truck 

2009 10,770 773,095 21.9 10,939 196,919 6.7 

2010 8,333 583,177 20.8 8,404 141,483 5.6 

2011 8,183 632,002 23.0 8,033 149,516 6.1 

2012 9,718 719,264 21.7 10,125 178,117 5.9 

2013 12,200 921,873 23.0 11,840 245,983 6.6 

http://www.dot.state.mn.us/mnroad/index.html
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2014 10,839 827,056 22.5 11,230 219,653 6.3 

2015 11,843 875,172 22.1 12,426 237,183 6.4 

2016 6,539 416,001 22.2 6,680 94,027 6.4 

Total N/A 5,747,640 N/A N/A 1,465,881 N/A 

 

2.3 TEST METHODS 

For this study, pavement field performance was measured and quantified using FWD tests, rutting tests, 

IRI values, friction tests, and surface distress evaluations after construction each year for eight years. 

Also, DCT tests were conducted to evaluate the mixtures with respect to their resistance to crack 

formation and propagation. In addition, LWD tests, DCP tests, gradation analysis, and moisture tests 

were utilized to assess the performance of the base materials. All of the field test methods were 

performed at certain intervals throughout the year. The other tests, i.e., the LWD tests, DCP tests, 

gradation analysis, and moisture tests, were conducted on an as-needed basis. Table 2-5 summarizes all 

the test methods employed for this study and the data collection frequency for each test method. 

Additional information about these test methods and data processing also can be found on the 

MnROAD website at http://www.dot.state.mn.us/mnroad/data/index.html. 

Table 2-5 List of test methods and data collection frequency 

Test Annual Frequency 

Falling Weight Deflectometer (FWD) 3 

Distress Survey 2 

Ride Quality 2 

Friction 2 

Rutting (ALPS) 3 

Disk-Shaped Compact Tension (DCT)  * 

Asphalt Mixture Volumetric Properties  * 

Light-Weight Deflectometer (LWD) * 

Dynamic Cone Penetrometer (DCP) * 

http://www.dot.state.mn.us/mnroad/data/index.html
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Moisture Content * 

Rutting (ALPS2) * 

Gradation  * 

* During construction and occasional forensic activities 

2.3.1 Field testing 

2.3.1.1 Surface distress survey 

A surface distress survey was carried out to monitor the field performance of the cells. The data 

collected from the survey included the distress type, extent or amount of the distress, and severity of 

the distress. The surface distress types for a pavement include surface-initiated or top-down cracking, 

transverse thermal cracking, and longitudinal cracking at construction joints. 

2.3.1.2 Rutting tests 

ALPS, which consists of a high-precision distance measurement laser mounted on a carriage, was used to 

determine the wheel path ruts in the HMA test cells. The ALPS was used to measure the transverse 

surface profile at intervals of 0.25 inch as the laser traveled across a 14-foot long aluminum beam.  

2.3.1.3 Falling weight deflectometer (FWD) tests 

An FWD, which consists of a loading plate, weight package, geophone sensors, and data acquisition 

equipment, can be used to measure the response of a pavement layer or system due to the dynamic 

load. In this study, FWD tests were conducted according to ASTM D4694, Standard Test Method for 

Deflections with Falling Weight Type Impulse Load Devices. In this test, the plate subsequently applies a 

dynamic load to the pavement as the weight package is lifted hydraulically and dropped in free fall, with 

geophone sensors simultaneously recording the deflection basin. The deflection basin can be used to 

determine the structural capacity of the system as well as to back-calculate the modulus values of the 

underlying layers. 

2.3.1.4 Ride quality 

Pavement smoothness is considered a critical factor in evaluating pavement conditions, as it affects the 

ride quality and thus is the most important factor for the traveling public. The IRI is one of the primary 

indices used to evaluate pavement smoothness. In this study, profiles of the right wheel paths were 

collected using dot lasers from Ames Engineering with a sampling rate of four samples per foot. The 

collected data were analyzed using Profile Viewing and Analysis (ProVAL Version 3.61.17) along with a 

10-inch moving average. 
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2.3.1.5 Friction tests 

Surface friction tests are used to measure the force that prevents vehicle tires from sliding on a 

pavement. Friction resistance includes the properties of the pavement surface characteristics and 

vehicle tires. In this study, an A KJ Law (Dynatest) 1295 Pavement Friction Tester was used to perform 

the friction tests at MnROAD in accordance with ASTM E 274, Specification for Skid Resistance Using a 

Full-Scale Tire. A skid trailer was used to obtain the skid number (SN), which is computed as the average 

coefficient of friction across the test cell intervals. SNs range from 0 to 100, with a higher SN indicating 

greater friction. 

2.3.2 Laboratory testing 

2.3.2.1 Disk-shaped compact tension (DCT) tests 

DCT tests can be used to determine the fracture energy of brittle materials under tensile stresses, which 

mirrors the shrinkage of asphalt pavement during the cooling process. ASTM D7313-13 covers the most 

current DCT test procedure. For this study, the sample preparation and testing were performed 

according to the ‘MnDOT Modified’ version of the ASTM standard. This modified version includes 

updates to the ASTM D7313-13 standard that were made by MnDOT to increase the ease of 

preparation, conditioning, and testing of samples as well as the practicality of the DCT test and 

consistency of results. 

2.3.3 Trench testing 

2.3.3.1 Gradation tests 

Sieve analysis or gradation tests can be used to evaluate the particle size distribution in soils using a 

mechanical shaker. In this study, aggregate gradation sampling and testing were conducted in 

accordance with Section 5-692.215 (Random Sampling Procedures) and Section 5-692.215 (Sieve 

Analysis Test Procedure: Gradation) of the MnDOT Grading and Base Manual. The percentage of each 

particle in a soil sample was determined by shaking the sample through several required sieve sizes. 

Hence, the soil could be allocated a specific textural classification depending on the percentage of each 

grain size group in the sample. 

2.3.3.2 Light-weight deflectometer (LWD) tests 

LWD tests were conducted to determine the stiffness of the unbound materials during construction in 

accordance with ASTM E 2835-11, Standard Test Method for Measuring Deflections using a Portable 

Impulse Plate Load Test Device. The portable LWD was used to measure the deflection of compacted soil 

under an applied load. Based on the deflection measured, a modulus value was estimated based on the 

force required to produce a given deflection for that particular soil type. 
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2.3.3.3 Dynamic cone penetrometer (DCP) tests 

The in situ shear strength of soil can be estimated using a DCP, which consists of a lower rod with an 

anvil and 60o cone tip, with an 8-kg hammer on the upper rod. This test is carried out by dropping the 

hammer from a distance of 575 mm, whereby it strikes the anvil and drives the cone tip into the soil. 

The DCP tests were conducted according to ASTM D 6951-03, Standard Test Method for Use of the 

Dynamic Cone Penetrometer in Shallow Pavement Applications. The dynamic penetration index (DPI) 

value was calculated as the depth of penetration of the DCP cone per drop of the hammer.    

2.3.3.4 Moisture tests 

Moisture content is evaluated to control and measure the compaction effort of unbound materials 

during DCP or LWD tests. The test methods used to determine moisture content are listed in the MnDOT 

Grading and Base Manual. To prevent the evaporation of any water into the atmosphere, materials 

often are sampled into a sealed plastic cup or bag. The gravimetric moisture content of the sample is 

measured as the ratio of the mass of the water to the mass of oven-dried material. In this study, these 

procedures were followed for moisture content testing. 
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CHAPTER 3:  RESULTS AND ANALYSIS 

3.1 MNPAVE ANALYSIS AND RESULTS 

MnPAVE is a computer program that combines known empirical relationships with a representation of 

the physics and mechanics of flexible pavement behavior 

(http://www.dot.state.mn.us/app/mnpave/index.html). The mechanistic portions of the program rely 

on finding the tensile strain at the bottom of the asphalt layer, the compressive strain at the top of the 

subgrade, and the maximum principal stress in the middle of the aggregate base layer. MnPAVE consists 

of three input modules, Climate, Structure, and Traffic, and three design levels, Basic, Intermediate, and 

Advanced. The level is selected based on the amount and quality of information known about the 

material properties and traffic data. In basic mode, only general knowledge of the materials and traffic 

data is required. The intermediate level corresponds to the amount of data currently required for 

MnDOT projects. The advanced level requires the determination of modulus values for all materials over 

the expected operating range of moisture and temperature (10).  

MnPAVE output includes the expected life of the pavement in terms of fatigue cracking and rutting. The 

expected life of Cells 16 through 23 was analyzed using MnPAVE (Version 6.304) at the basic design level 

using materials data collected during construction in 2008. Table 3-1 presents the analysis inputs and 

results. It should be noted that only limited information (i.e., resilient modulus data) regarding the base 

material was available for Cells 17 and 23, and the analysis was performed as if 100 percent recycled 

PCC was used as the base material. Furthermore, different RAP contents and the use of WMA for various 

cells could not be incorporated into the analysis. Thus, the results should be used only as a rough 

estimate of the expected life for each cell. In general, cells with stiffer base material showed longer 

fatigue and rutting expected life. Cells with 100 percent RAP as the base material showed the longest 

expected life both in terms of fatigue and rutting. Cells with different binder grades (i.e., PG 58-28 vs. 

58-34) and binder contents did not show significant differences in expected life.  

 

http://www.dot.state.mn.us/app/mnpave/index.html
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Table 3-1 MnPAVE (Version 6.304) analysis inputs and results  

MnPA

VE 

Inputs 

TRAFFI

C 

STRUCT

URE 
 

 

   Expected Life  

Cell 

Lifetim

e (mil. 

ESALS) 

HMA 

Thickne

ss (in.) 

Binder 

Grade 
RAP Agg.  

Base 

Agg. 

Sub-

base 

Existi

ng 

Soil 

Fatig

ue 

Rutti

ng 

16 

14 5 

58-34 

%AC 5.1,  

Warm Mix 

20% 

12 in. 

100% 

Recycled 

PCC 

12 in. 

Class 

3 

 &  

7 in.  

Select 

Granu

lar 

Clay 

Loam 

(A-6) 

35 11 

17 

12 in. 

50% 

Recycled 

PCC/50%C

lass 5 

35* 11* 

18 
12 in. 

100% RAP 
50 17 

19 
12 in.  

Class 5 
11 8 

20 
58-28 

%AC 5.0 

30% 

Non-

fraction

ated 
12 in. 

Class 5 

9 6 

21 
58-28 

%AC 5.6 
30% 

11 6 

22 
58-34 

%AC 5.4 
9 7 

23 

58-34 

%AC 5.1,  

Warm Mix 

20% 

12 in. 

Mesabi 

Select 

Aggregate 

35* 11* 

*Analysis was performed using 100% recycled PCC base as an input. 

3.2 DISK-SHAPED COMPACT TENSION TEST RESULTS 

Test specimens for the DCT tests were fabricated in 2016 from 150-mm (5.91-in.) gyratory-compacted 

pills using loose mixture samples collected from all the cells (Cell 16-23) in 2008. The temperature used 

for the DCT tests in this study was -21.4°C, which is 10°C warmer than the asphalt binder PG low 

temperature required for 98 percent reliability, as determined by LTPPBind 3.1 software for the 

MnROAD location. Figure 3-1 presents the DCT test results. In the figure, the cell number indicates the 
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cell(s) in which each corresponding type of mixture was used. The line represents the ranges, and the 

number inside the bar represents the average fracture energy value for each mixture type.  

The DCT tests were performed from March through May 2016. The average fracture energy values range 

from 443 J/m2 to 546 J/m2. The lowest and highest fracture energy values were obtained from 

specimens with PG 58-28 binder and 30% RAP and from specimens with PG-58-34 binder and 20% RAP, 

respectively. Based on the traffic level (10 – 300 million ESALs) for the MnROAD cells, the minimum DCT 

fracture energy required is 450 J/m2. Accordingly, the PG 58-34 mixtures met the minimum fracture 

energy requirement, and the PG 58-28 mixture did not. Statistical analysis was performed to determine 

the significance of the facture energy differences among the three mixtures. The fracture energy 

differences between the PG 58-34 20% RAP specimens and PG 58-28 30% RAP specimens and between 

the PG 58-34 30% RAP specimens and PG 58-28 30% RAP specimens were statistically significant.  

 

Figure 3-1 Disk-shaped compact tension test results.  
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3.3 NONDESTRUCTIVE TESTING RESULTS 

3.3.1 Surface distress survey results 

Surface distress surveys were conducted prior to construction and once or twice each year thereafter. 

The cracks were categorized in terms of surface distress type: fatigue cracking, block cracking, 

longitudinal cracking on the wheel path, longitudinal cracking on the non-wheel path, transverse 

cracking, raveling, and construction joint cracking. The cracks were measured in linear feet. In the case 

of fatigue cracking, the fatigue crack area was measured in square feet. Table 3-2 presents the year 

when each type of crack first occurred in each cell. Figure 3-2 to Figure 3-9 show the extent of each 

crack type for each cell. In each figure, the extent of the crack is presented in terms of each lane (passing 

and driving) and as a sum of both lanes. Note that in Table 3-2 and Figures 3-2 to 3-9, WP is wheel path, 

DL is driving lane, and PL is passing lane. 

Key findings from the surface distress survey are outlined below: 

 In general, most cracks did not occur until 2014. The first crack observed was a transverse crack 

in Cell 16 (2010). Block cracking did not occur in most cells and  exhibited only in Cell 18. Overall, 

Cell 18 showed the least amount of cracking and Cells 21 and 23 showed the most cracking. 

 Relatively more transverse cracks were observed in Cells 20 and 21 compared to the other cells, 

and most of those cracks were in the driving lane. The mixture type used for Cells 20 and 21 also 

showed lower fracture energy values than the other two mixtures. However, it should be noted 

that the extent of the transverse cracking in Cells 20 and 21 was very small, as 200 feet of 

transverse cracking could be interpreted as one full lane length transverse crack every 50 feet 

per lane. It is interesting to note that the first transverse crack was observed in Cell 16 and the 

mixture type used for Cell 16 provided the highest fracture energy value.  

 Fatigue cracks first appeared in the driving lanes of Cells 16, 17, 19, 21, and 23 in 2014. Fatigue 

cracks were observed in Cells 20 and 22 in 2015. The accumulated ESALs for the driving lanes by 

the end of 2013 and 2014 were 3,629,411 and 4,456,467, respectively. With regard to fatigue 

cracking, Cell 20 showed the most fatigue cracking and Cell 18 did not show any fatigue 

cracking. Considering that typical fatigue failure is defined as 20 percent of the total lane area 

(i.e., 2400 ft2), all cells were well below this criterion.  

Overall, Cells 21 and 23 exhibited the greatest extent of surface distresses, and Cell 18 showed the 

least. However, it should be emphasized that all cells were in relatively good condition, as the total 

extent of the surface distresses for all the cells was relatively small. Surface distresses were not 

significant enough in all the cells to assess the relative performance of the unbound materials 

compared to the virgin Class 5 aggregate base material. Furthermore, the significance of the fracture 

energy resistance of the different mixtures could not be investigated.  
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Table 3-2 First occurrence of each type of crack for each cell 

Cell Fatigue Block 
Longitudinal 

WP 

Longitudinal 

Non-WP 
Transverse Raveling 

Construction 

Shoulder 

Construction 

Centerline 

16 DL 2014  2014 2015 2010 2014 2015 2015 

16 PL 2015   2015 2010 2014   

17 DL 2014  2014 2013 2012 2011 2012 2013 

17 PL 2014    2014 2013   

18 DL   2013   2013  2015 

18 PL      2014   

19 DL 2014  2014  2014 2014 2013 2011 

19 PL 2014   2014  2014   

20 DL 2015  2015  2011 2014 2012 2014 

20 PL 2015  2015 2015 2014 2012   

21 DL 2014 2014 2014  2011 2014 2012 2014 

21 PL 2014  2014 2012 2014    

22 DL 2015  2013 2014 2014 2012 2012 2014 

22 PL 2015  2014 2015     

23 DL 2014  2014  2014 2012 2012 2012 

23 PL 2014   2012 2014 2012   
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Figure 3-2 Extent of transverse cracking for each cell. 
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Figure 3-3 Extent of longitudinal cracking in wheel path for each cell. 
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Figure 3-4 Extent of block cracking in wheel path for each cell. 
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Figure 3-5 Extent of fatigue cracking in wheel path for each cell. 
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Figure 3-6 Extent of raveling in wheel path for each cell. 
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Figure 3-7 Extent of longitudinal shoulder joint cracking for each cell. 
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Figure 3-8 Extent of longitudinal centerline cracking for each cell. 
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Figure 3-9 Extent of all cracking (except fatigue cracking) in wheel path for each cell. 
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3.3.2 Rutting test results 

Rut depths were measured at ten different stations for each cell per lane. Figure 3-10 presents the 

average rut depth measured in 2015 for each cell. Figure 3-11 and Figure 3-12 show the rut depth 

measurements over time for the driving lane and passing lane, respectively. In general, cells with 

unbound pavement materials (Cells 16-19, 23) show greater rut depths (deeper ruts) than cells with 

Class 5 aggregate base material. Cell 23 (taconite base) and Cell 22 (Class 5 base) show the maximum 

and minimum rut depths, respectively. However, all cells showed good rutting resistance considering 

that rutting failure typically is defined as a 0.5-inch rut.  

 

Figure 3-10 Average rut depths in driving lane (2015). 
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Figure 3-11 Rut depths measured in driving lane. 
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Figure 3-12 Rut depths measured in passing lane.
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3.3.3 Falling weight deflectometer (FWD) test results 

FWD tests were conducted three times annually to evaluate the structural adequacy of each cell. These 

tests were performed in the driving and passing lanes at 200-foot intervals. A 9,000-lb (40-kN) load level 

was used for testing. TONN 2010, a software system developed by the University of Minnesota, was 

used to calculate the stiffness values and deflections. It should be noted that pavement thickness is one 

of the major factors that affects the calculation of stiffness values. Table 3-3 presents the average 

thicknesses of the HMA layers measured by ground penetrating radar (GPR) for the analysis. This table 

also shows the thicknesses measured from core samples as a reference. Figure 3-13 to Figure 3-18 

present the FWD test results that include the stiffness values and surface deflections for each cell. 

In general, stiffness tends to decrease during summer and increase during winter. Overall, the cells with 

Class 5 aggregate as the base material showed lower stiffness values and greater deflections than cells 

with recycled unbound pavement materials. The cells with recycled unbound pavement materials (Cells 

16-18, 23) showed higher stiffness values along with fewer deflections, as illustrated in Figure 3-13. 

Figure 3-14 indicates that the differences in the stiffness values for those cells (Cells 16-19, 23) were 

affected primarily by the stiffness of the base materials. Figure 3-15 and Figure 3-16 present the 

stiffness values of the cells (Cells 20-22) constructed with different binder grades (i.e., PG 58-28 vs. PG 

58-34) over the same Class 5 aggregate as the base material. Figure 3-16 shows that Cells 20 through 22 

have similar stiffness values for the base layer, which is as expected from the use of the same material 

for all three cells. Figure 3-15, however, shows that Cell 22 has a lower HMA layer stiffness value than 

Cells 20 and 21. This outcome can be explained by the use of a stiffer binder grade for Cells 20-21 

compared to Cell 22.   

Table 3-3 Hot mix asphalt layer thicknesses measured using ground penetrating radar (GPR) and core samples 

Cell 
GPR Core Samples (2016) 

Median Thickness, in. Median Thickness, in. 

16 4.63 4.40 

17 4.94 4.80 

18 5.00 4.50 

19 5.03 4.75 

20 4.84 4.93 

21 4.93 4.81 

22 5.32 4.63 

23 6.14 6.25 
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Figure 3-13 Hot mix asphalt layer stiffness values for Cells 16-19 and 23 (TONN 2010). 
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Figure 3-14 Base layer stiffness values for Cells 16-19 and 23 (TONN 2010). 
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Figure 3-15 Hot mix asphalt layer stiffness values for Cells 20-22 (TONN 2010). 
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Figure 3-16 Base layer stiffness values for Cells 20-22 (TONN 2010). 
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Figure 3-17 Deflections for Cells 16-19 and 23. 
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Figure 3-18 Deflections for Cells 20-22. 
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3.3.4 Ride quality results 

Pavement profile data were collected each year to evaluate the functional performance of the test 

sections. The pavement profiles were analyzed using ProVAL (Version 3.61.17) with a 10-inch (250-mm) 

moving average to obtain the IRI values. The analysis results are plotted in Figure 3-19 and Figure 3-20. 

Overall, most cells show IRI values less than 95 in./mile, which can be considered good condition in 

terms of ride quality. It is interesting to note that Cells 20 and 21 exhibited the most surface distresses, 

yet the IRI data do not agree with this observation. Also, Cell 18, which did not exhibit any transverse 

cracks and had the fewest cracks overall, did not show the lowest IRI values. It can be concluded that the 

extent of the cracks was not significant enough to affect the ride quality. 
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Figure 3-19 International roughness index values for passing lane. 
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Figure 3-20 International roughness index values for driving lane. 
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3.3.5 Friction test results 

Figure 3-21 presents the friction test results for 2008 and 2015. Based on the SNs for all the cells, it was 

difficult to assess the performance difference between cells with different base materials or different 

mixture types. It should be noted that the aggregate used for the mixtures was from a single source.  

Figure 3-21 Skid numbers measured at 40 mph with ribbed tire. 
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3.4 TRENCH TESTING (CELLS 16 - 19) 

3.4.1 Forensic trenches 

Trenches were excavated from the driving lanes of Cells 16 through19 in July 2016. The trenches were 

12 feet by 3 feet. The 12-foot dimension encompassed one 12-foot lane. The 3-foot dimension was 

chosen to allow access into the trench for in situ testing and sample collection. Before the trenches were 

extracted, ALPS2 was used to measure the trench profile (pre-removal). After the trenches had been 

removed, the profile (post-removal) was measured again. The trench profiles (before and after 

extraction) were measured to determine the contribution of rutting from the different HMA lifts and 

aggregate base layers. However, the correct thickness of the trench panels could not be calculated due 

to the irregular profile of the base surface. As a result, the rutting performance could not be determined 

from the trench panels. 

3.4.2 Gradation test results 

Gradation tests were completed using samples of the original construction material and material 

gathered during the forensic investigation. The results of these gradation tests were compared to the 

requirements found in MnDOT specifications. The MnDOT specifications give different gradation 

requirements depending on the type and content of the recycled unbound material used as the base 

material (see MnDOT specifications 2016, Tables 3138-3, 3138-4, and 3138-5) (1). Figure 3-22, Figure 

3-23, Figure 3-24, and Figure 3-25 present the results of the gradation tests for Cells 16 through 19, 

respectively, with the maximum and minimum requirements. Figure 3-22 indicates that the recycled PCC 

base material exceeded the maximum limits for Sieves No. 40 and 200 at the time of construction and 

after eight years of service. However, the results do not show any significant difference in gradation 

after eight years of service. Figure 3-23, Figure 3-24, and Figure 3-25 also indicate that the other 

unbound recycled materials maintained relatively the same gradation over the same period.  
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Figure 3-22 Gradations for recycled Portland concrete cement base (Cell 16). 

 

Figure 3-23 Gradations for 50% recycled Portland concrete cement base/50% Class 5 aggregate base (Cell 17). 
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Figure 3-24 Gradations for 100% reclaimed asphalt pavement base (Cell 18). 

 
 

Figure 3-25 Gradations for Class 5 aggregate base (Cell 19).  
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3.4.3 Light weight deflectometer (LWD), dynamic cone penetrometer (DCP), and 

moisture content test results 

The in situ moisture content in the subgrade ranged from 3.6 percent to 10.3 percent for Cells 16 

through 19. The maximum allowed DPI value was computed according to the MnDOT Grading and Base 

Manual and Specification 2211. This calculation uses both moisture content and the ‘grading number’ 

(the sum of the percentages passing each sieve) to determine the permissible DPI values. LWD and DCP 

tests were performed in three locations at each excavation site. Table 3-4 presents the results along 

with the maximum allowed DPI and LWD values (MnDOT specification 2016) (1). The DPI values and 

LWD deflections in the base ranged from 5 mm/blow to 7.3 mm/blow and from 0.20 mm to 0.29 mm, 

respectively. Overall, the Class 5 aggregate base material experienced fewer deflections than the 

unbound recycled materials based on both the DCP and LWD test results. All three recycled unbound 

materials showed similar test results, and the FWD test results showed the same trend as well. These 

results indicate that both the Class 5 and recycled unbound materials were in good condition and met 

the requirements after eight years of service.  

Table 3-4 Dynamic penetration index (DPI) and light-weight deflectometer (LWD) test results  

Cell Grading No. 

Moisture 

Content 

(%) 

DPI 

Max. 

Allowed 

DPI* 

(mm/blow) 

LWD 

Max. 

Allowed 

LWD* 

(mm) 

16 

(RCA) 
3.6 10.3 5.3 19 0.21 0.68 

17 

(RCA + 

Class 5) 

4.2 7.68 5.0 17 0.21 0.61 

18 

(RAP) 
4.1 3.60 5.7 13 0.20 0.46 

19 

(Class 5) 
4.6 6.04 7.3 19 0.29 0.68 

*MnDOT specification 2016 
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CHAPTER 4:  CONCLUSIONS AND RECOMMENDATIONS 

This report presents the findings from an eight-year performance evaluation of eight cells (Cells 16-23) 

built at MnROAD in 2008. The constructed cells were used for two performance evaluation studies of: 1) 

unbound base materials (i.e., RAP, RCA, and taconite) and Class 5 aggregate as the road base material 

and 2) surface materials that include WMA, RAP, and different binders with different PGs.  

The eight cells were tested via a surface distress survey, rutting tests, FWD tests, IRI tests, and friction 

tests. DCT tests also were performed using the mixture samples, and the performance of the unbound 

base materials (Cells 16-19) was evaluated using LWD, DCP, and gradation tests. During the performance 

monitoring period from 2008 to 2016, the cells did not experience any extreme weather events, and the 

traffic levels, i.e., the ESALs and truck percentages, also were in the normal range. The fatigue life and 

rutting life of the pavements predicted by MnPAVE ranged from 9 to 50 years and 6 to 11 years, 

respectively. After eight years of service (approximately 5.6 million ESALs), the fatigue and rutting 

exhibited by the cells did not exceed the failure threshold.  

All the data presented in this report, as well as the sampling, testing, and construction information, can 

be found in the MnROAD database and various publications. Additional information about MnROAD can 

be found on the MnROAD website at http://www.dot.state.mn.us/mnroad/index.html. The following 

conclusions and recommendations were reached based on the field and laboratory test results. 

4.1 CONCLUSIONS 

 Overall, after eight years of service, the MnROAD cells were in good condition with regard to 

their resistance to surface distresses, rutting, stiffness, IRI values, and friction. Consequently, it 

was difficult to compare the performance differences between the various unbound materials 

and HMA mixtures. 

 A correlation between DCT fracture energy and the thermal low-temperature performance of 

the mixtures could not be found due to the limited number of cracks in the cells. 

 The unbound recycled materials and taconite performed as well as the Class 5 aggregate base 

material in terms of the gradation, DCP, and LWD test results.  

 All the mixture types, regardless of RAP content, binder grade, and the presence of WMA, 

exhibited similar performance. 

4.2 RECOMMENDATIONS 

 Additional research is required to validate the findings from this study. Laboratory tests of core 

samples are currently being conducted, and a separate report will be generated to expand on 

this report. 

 MnPAVE updates are required for the partial use of unbound base materials (e.g., 50% RAP and 

50% Class 5 materials). Also, resilient modulus values and their seasonal variations need to be 

found. 

http://www.dot.state.mn.us/mnroad/index.html
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 Further research into a temperature correction model for TONN 2010 needs to be conducted to 

refine the existing model. Significant seasonal variations with back-calculated stiffness values 

were noted even after being corrected at 72ºF.  

 

  



 

45 

REFERENCES 

1. Minnesota Department of Transportation. Standard Specifications for Construction. St. Paul, MN: 

Minnesota Department of Transportation, 2016. 

2. Johnson, A, Clyne, T R, and Worel, B J. 2008 MnROAD Phase II Construction Report. Maplewood, MN: 

Minnesota Department of Transportation, 2009. 

3. Marasteanu, M., Buttlar, W., Bahia, H., & Williams, C. Investigation of Low Temperature Cracking in 

Asphalt Pavements. St. Paul, MN: Minnesota Department of Transportation, 2007. 

4. Clyne, T R, Johnson, E N, and Worel, B J. Use of Taconite Aggregates in Pavement Applications. St. 

Paul, MN: Minnesota Department of Transportation, 2010. 

5. Marasteanu, M., Zofka, A., Turos, M., Li, X., Velasquez, R., Li, X., . . . MnGraw, J. Investigation of Low 

Temperature Cracking in Asphalt Pavements, Phase II. St. Paul, MN: Minnesota Department of 

Transportation, 2012. 

6. Edil, T B, Tinjum, J M, and Benson, C H. Recycled Unbound Materials. St. Paul, MN: Minnesota 

Department of Transportation, 2012. 

7. Johnson, E, Watson, M, and Clyne, T R. MnROAD Study of RAP and Fractionated RAP. St. Paul, MN: 

Minnesota Department of Transportation, 2012. 

8. McDaniel, R et al. Hot Mix Asphalt Surface Characteristics Related to Ride, Texture, Friction, Noise, adn 

Durability. St. Paul MN: Minnesota Department of Transportation, 2014. 

9. Worel, B and Van Deusen, D. Benefits of MnROAD Phase II Research. St. Paul, MN: Minnesota 

Department of Transportation, 2015. 

10. Johanneck, L et al. DCT Low Temperature Fracture Testing Pilot Project. St. Paul: Minnesota 

Department of Transportation, 2015. 

11. Minnesota Department of Transportation. MnPAVE. MnPAVE Flexible. [Online] Minnesota 

Department of Transportation, 12 2016. http://www.dot.state.mn.us/app/mnpave/. 

 

 



 

 

APPENDIX A: MNROAD LAYOUT (2008 CONSTRUCTION) 
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